Quiz 2

COL 352

Introduction to Automata \& Theory of Computation

Problem 1

Given the grammar

$$
\begin{gathered}
S \rightarrow A A \\
A \rightarrow A A A|a| b A \mid A b
\end{gathered}
$$

is it true that it generates all strings with even number of a's? Either give a counter-example or state a formal induction assertion for S and A (induction proof not required) that makes the claim true.
Solution : Yes, all the strings with even number of a 's can be generated
Induction Assertion: $\forall i \geq 1$ and $\forall w,|w|=i$

1. $A \rightarrow w$ iff w contains odd number of a's
2. $S \rightarrow w$ iff w contains even number of a's
I) Claim : $\forall i \geq 1$ and $\forall w,|w|=i, A \rightarrow w$ iff w contains odd number of a's

Proof: By induction on the length of string w
Basis: $A \rightarrow a$. Since A terminates only at a, a is the only 1 length string that can be generated Induction Hypothesis : The grammar generates all strings of length $n \leq k$ iff number of a's is odd Induction Step: For $|w|=k+1$ and has odd number of a's then for $A \rightarrow w-w$ can be of the form $a w_{1} a, b w_{1} b, a w_{2} b$ or $b w_{2} a$, where
(i) $\left|w_{1}\right|=k-2$ and has odd $a^{\prime} s$

$$
\begin{gathered}
A \rightarrow A A A \rightarrow a A A \rightarrow a A_{1} a \\
A \rightarrow b A \rightarrow b A_{1} b
\end{gathered}
$$

From Induction Hypothesis, $A_{1} \xrightarrow{*} w_{1}$
(ii) $\left|w_{2}\right|=k-2$ and has even number of a's

$$
\begin{aligned}
& A \rightarrow A A A \rightarrow A A A b \rightarrow a A_{1} A_{2} b \\
& A \rightarrow A A A \rightarrow b A A A \rightarrow b A_{1} A_{2} a
\end{aligned}
$$

Let w_{21} and w_{22} be such that $\left|w_{21}\right|<k-2,\left|w_{22}\right|<k-2$ and $\left|w_{21}\right|+\left|w_{22}\right|=k-2$ and odd a's.
From $\mathrm{IH}, A_{1} \xrightarrow{*} w_{21}$ and $A_{2} \xrightarrow{*} w_{22}$, i.e., $w_{21} w_{22}=w_{2}$ and has even a's.
Thus $A_{1} A_{2} \xrightarrow{*} w_{2}$
If $A \rightarrow w$ and $|w|=k+1$, then w has odd number of a's - Let w be a $k+1$ length string with even a's.
Possible grammar productions for generating $n=k+1$ length string - $A \rightarrow b A_{1}$ and $A \rightarrow A_{1} b$
A_{1} should generate string of length k with even a's. But from IH, we have that only those strings of
length k are generated by A which have odd a's. Thus contradiction.
$A \rightarrow A_{2} A_{3} A_{4}$
Also, from IH, A_{2}, A_{3} and A_{4} generates strings of length less than k with odd number of a's.
Thus, together they generate a string with odd number of a's as 3 odds will make 1 odd.
Thus for all $i \geq 1$, and all strings $|w|=i, A \rightarrow w$ iff w contains odd number of a's
II) Claim : $\forall i \geq 1$ and $\forall w,|w|=i, S \rightarrow w$ iff w contains even number of a's

Proof : Any string, x with even a's (say n) can be divided into two strings with odd a's.
Since A generates all strings with odd a's, $S \rightarrow A A$ can generate all string with even number of a's
From I and II, we can prove that the grammar generates all strings with even number of a's

Problem 2

Let L be the language of all strings over the alphabet $\{a, b, c, d\}$ that do not contain an equal number of a, b, c, d 's, i.e. $a a b c c \in L$, but $a b c c a d b d \notin L$. Is L a CFL? Justify your answer
Solution : Let $\operatorname{num}(x, w)$ denote the number of x 's in the word $w, x \in \Sigma(=\{a, b, c, d\})$
Consider the language $L_{x y}=\{w \mid \operatorname{num}(x, w) \neq \operatorname{num}(y, w)\}$
Clearly, $L=\bigcup_{x \neq y}^{x, y \in \Sigma} L_{x y}$
Further, $\forall x, y \in \Sigma, L_{x y}$ is a CFL, with the CFG

$$
\begin{gathered}
S \rightarrow U \mid V \\
U \rightarrow T x U \mid T x T \\
V \rightarrow T y V \mid T y T \\
T \rightarrow x T y T|y T x T| t T \mid \epsilon
\end{gathered}
$$

where $t \in \Sigma-\{x, y\}(=\{c, d\}$ for $x=a$ and $y=b$). Here, the symbol U generates strings w with $\operatorname{num}(x, w)>\operatorname{num}(y, w)$. V generates num $(y, w)>\operatorname{num}(x, w)$ and T generates $\operatorname{num}(x, w)=\operatorname{num}(y, w)$.
Alternately, $L_{x y}$ can be represented by the PDA as follows -

- If stack is empty or top has x on it, push x onto the stack when it is read, pop from stack when y is
- If stack is empty or top has y on it, push y onto the stack when it is read, pop from stack when x is
- Simply consume symbols other than x and y
- Transition to the final, accepting state if the whole string has been consumed but the stack is non-empty

Since the finite union of CFLs yields a CFL (simply another transition from the start symbol), L is a CFL

Notes on grading -
Correctly identifying CFL is worth $2 / 10$ marks
$L^{\prime}=\{w \mid \operatorname{num}(a, w) \neq \operatorname{num}(b, w) \neq \operatorname{num}(c, w) \neq \operatorname{num}(d, w)\} \subset L, 0$ if $L^{\prime}=L$,

