Quiz 1

COL 352
Introduction to Automata \& Theory of Computation

Problem 1

1. $L=(0 \mid 1)^{*}(101)(0 \mid 1)^{*}$, i.e. the NFA represents the language which contains 101 as a substring
2. $L=(0 \mid 1)^{*}$, i.e. the NFA accepts all the strings defined over the alphabet $\sum=\{0,1\}$
3. Complementing the states of NFA does not necessarily complement the language accepted by the original NFA. However, the above claim is true for a DFA.

Problem 2

Following is the DFA for
$L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains the substring "110" or "0001" $\}$ where
$Q=\{A, B, C, D, E, F\}$
$\sum=\{0,1\}$
$q_{0}=A$
$F=\{G\}$

Figure 1: DFA for L
A: starting state
B: indicates ' 1 ' or '01' has been encountered, i.e, one ' 1 ' has been encountered
C: indicates '11' has been encountered
D: indicates ' 0 ' or ' 10 ' has been encountered, i.e, one ' 0 ' has been encountered
E: indicates ' 00 ' has been encountered
F: indicates '000' has been encountered
G: indicates either ' 110 ' or ' 0001 ' has been encountered and thus a final state
Thus this DFA accepts only L

