
COL 352 Intro to Automata and Theory of Comput.
Minor 2, Sem II 2018-19, Max 40, Time 1 hr

Name Entry No. Group

Note (i) Write your answers neatly and precisely in the space provided with with each question including back of the sheet.

You won’t get a second chance to explain what you have written.

(ii) You can quote any result covered in the lectures without proof but any other claim should be formally justified.

(iii) You can make use of Dirichlet theorem - in any sequence a + b · i, i > 0 where a, b are relatively prime there are infinitely

many primes congruent to a modulo b.

1. Consider the language L = (00 + 11)+. Describe the equivalence classes of strings over {0, 1} of the
relation RL (Myhill Nerode relation). (5 )

There are five equivalence classes corresponding to the five states of the min state DFA. These are
ε, (00 + 11)+, 0(00)∗, 1(11)∗, (01+10)·(0 + 1)∗. It can be verified that none of the states are equivalent
as per RL and only the second set of strings correspond to the accepting state.
Common mistake was not even getting the number of classes correct. This was heavily penalised
since it doesn’t even account for all strings and shows a deficiency in understanding of minimum
state automaton. Minor penalty if only states were given without characterization of the strings.

2. Are the following languages CFL ? Justify or prove otherwise. (5× 2 )

(a) The language PAREN2 consists of all balanced strings over (, ), [, ]. For example, ([[]])[()()] is
balanced but ([[)]] is not. In other words, the two distinct parenthised strings should be individ-
ually balanced over the pairs (, ) and [, ] respectively but the balancing cannot be interspersed.
Either the two expressions should be disjoint or one should be embedded inside the other.

S → ()|[]|SS|(S)|[S]

Most solution came up with the grammar which is easy to verify and rigorous proof was not
expected. Minor penalty if there were too many redundant productions without any justification.
The PDA based justification requires more effort. In the least, for the PDA description, like
set of states, stack symbols should have been given and and some commentary on the working
of this machine. Just listing some transition tuples without any comment about the purpose is
not adequate. Primarily one needs to bring out why this PDA is similar or different from the
PDA for balanced parenthesis over one kind.

(b) {0i|i is composite }.
By using pumping lemma on a sufficiently long string 0N = uvwxy where 1 ≤ |v|+ |x| ≤ n ≤ N ,
all strings 0ki · 0N−k ∈ L Let N − k = a and k = b. To apply Dirichlet theorem, we need to
ensure that a, b are co-prime. Note that we can choose N > n where n is the parameter of the
PL. So we can choose a prime p > n and N = p2 since N must be composite.
The common mistakes were (i) Not applying pumping lemma properly by trying to select |v|+
|x| (ii) Trying to apply Dirichlet’s theorem without satisfying the preconditions of co-prime.
Note that a + b · i is never prime if b is a multiple of a. (iii) Assuming CF is closed under
complementation and proving it for primes.
A beautiful result called Parikh’s theorem says that over a unary alphabet CFL = Regular
but we have not covered it in this course and hence cannot be invoked without a proof which is
non-trivial.
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3. Describe a procedure to convert a well-formed (valid) regular expression r into an equivalent CFG G
with some underlying justification. Illustrate this on the r.e. (0 · 1 + 1∗)∗ for all strings over {0, 1}.
(10 )
Hint: Use the recursive definition of r.e.

We will do this by induction on the length of the regular expressions. The base cases are the unit
length symbols of Σ and ε. So these are the productions of the form S → a a ∈ Σ
Suppose we can represent all regular expr upto length n. Then either

• r = r1 + r + 2 where |ri| < n. Then add a production S → S1|S2 where ri can be generated by
CFGs with start symbol Si.

• r = r1 · r2, then using similar idea S → S1 · S2
• r = r′∗ where |r′| < n. Then add the productions
S → SS′ |ε where S′ derives r′.

• r = (r′) where |r′| < n, then add S → (S).

Since all the r.e.s can be constructed recursively, we can obtain a CFG for any given r.e. For the
given expression, we can use the above construction in a bottom up fashion using adequate number
of variables.

Let A→ 0 B → 1 and C → A ·B. Thus C derives the r.e. 01.
Similarly D → D ·B|ε allows D to derive 1∗. Subsequently let E → C|D allows E to derive the r.e.
01 + 1∗. Finally S → SE|ε derives the original r.e.

Note that we can also add another production S → (S) to take care of parenthesis.
Common deficiences were (i) Missing base cases. It becomes important when you have productions
like A → 01 where 01 6∈ Σ but 01 ∈ Σ2. Without the correct rules you cannot have productions of
the form A → Σk for any k > 1. (ii) Not applying the transformation according to the description,
especially wrt definition of additional variables.

4. Given a CFL L describe an algorithm to decide if it contains any string NOT of the form (0 · 1)i for
some i > 0. (It need not contain all such strings). (6 )

Since (0 · 1)i is regular so are strings that belong to the complement of this set, say R. Assume that
the CFL is given in CNF. Using closure property of CFL under intersection with a regular language
is a CFL. Therefore R ∩ L is a CFL. Now we can use the emptiness testing on L′ = R ∩ L as an
algorithm for the decision problem. We can set the parameter of the PL as n = 2k where k is the
number of variables of the CFL L′.

Many solutions modified the emptiness testing of L to also include checking for (01)i upto some
length n that is related to the PL for the CFL L. This is not correct since the CFL L′ has a different
parameter value.
Other attempts were related to generating all possible strings using a Grammar and checking. With-
out a proof of correctness and termination, no marks were given. Many of the attempts tried to
somehow exploit the structure of the r.e. (0 · 1)i when they should have focussed on just using the
fact thatit is regular.

5. Consider the languages
L1 = {(01)i|i ≥ 0}, L2 = {0i · 1i|i ≥ 0} L3 = {0i1i2i|i ≥ 0}.
Consider the following machine models where Q: states Σ input alphabet Γ: tape alphabet/Stack
alphabet
M1 ordinary Turing machine δ1 : Q× Γ→ Q× Γ× {L,R}
M2 A Turing machine that is not allowed to overwrite, with transition function δ2 : Q×Γ→ Q×{L,R}
M3 A deterministic PDA with two stacks. δ3 : Q× Σ ∪ {ε} × Γ× Γ→ Q× Γ∗ × Γ∗.
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For each Machine model, identify which languages it can recognize1. (3 + 3 +3 )

Machine Which languages does it recognize (proof not needed)

M1 L1 L2 L3

M2 L1

M3 L1 L2 L3

The underlying reasoning is that M2 is equivalent to DFA and M3 is equivalent to M1. The proofs
are not expected and takes some effort especially the characterization of M2.

1Marks will be given only if you correctly identify all the languages for each machine
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