COL 352 Introduction to Automata and Theory of Computation
 Major Exam, Sem II 2018-19, Max 80, Time 2 hr

Name \qquad Entry No. \qquad
Note (i) Write your answers neatly and precisely in the space provided with with each question including back of the sheet. You won't get a second chance to explain what you have written.
(ii) You can quote any result covered in the lectures without proof but any other claim should be formally justified.
(iii) For proving undecidability or NP-hardness, the proofs must explicitly use the technique of reductions - no credit otherwise.

1. Answer True or false, tick the right choice or fill up as necessary - no proofs needed. (Negative 2 for each incorrect answer to the True/False and multiple choice type.)
(a) The minimum state PDA to recognize the language strings not of the form $w \cdot w$ where $w \in$ $(0+1)^{*}$ has one states. (2)

Since every PDA can be reduced to a 1 state machine when transformed from the equivalent CFL.
(b) A shuffle of two strings $x, y \in \Sigma^{*}$ denoted by $x \| y$ is the set of strings that can be obtained by interleaving the strings x and y in any manner. For example $a b \| c d=\{a b c d, a c b d, a c d b, c a b d, c a d b, c d a b\}$. (The strings need not be of the same length.) For two sets of strings A, B, the shuffle is defined as $A\left\|B=\bigcup_{x \in A, y \in B} x\right\| y$. (4×2)
(i) If L_{1} and L_{2} are regular then $L_{1} \| L_{2}$ is regular. True

We can define an NFA with transition function $\delta\left(\left[q_{1}, q_{2}\right], a\right)=\left\{\left[\delta_{1}\left(q_{1}, a\right), q_{2}\right],\left[q_{1}, \delta_{2}\left(q_{2}, a\right)\right]\right\}$ where δ_{1}, δ_{2} correspond to the transition function of L_{1}, L_{2}.
(ii) If L_{1} and L_{2} are CFL, then $L_{1} \| L_{2}$ is CFL. False

IF $L_{1}=a^{n} b^{n}$ and $L_{2}=c^{n} d^{n}$ then $a^{i} c^{j} b^{i} d^{j} \in L_{1} \| L_{2}$. If this is CFL then we can create strings with unequal number of a's and b's using P.L. that should not belong to $L_{1} \| L_{2}$.
(iii) If L_{1}, L_{2} are recursively enumerable then $L_{1} \| L_{2}$ is r.e. True

We can try all partitions of the given string and run the machine for M_{1} and M_{2} and accept if one of the partitions is accepted. We can assume that the machines are non-deterministic to avoid any complications of non-halting.
(iv) If L_{1} is CFL and L_{2} is regular then $L_{1} \| L_{2}$ is CFL. Like part (i) the PDA can maintain the states corresponding to both languages and one stack and has a choice of either making a transition according to L_{1} or L_{2}.
(c) Consider the following instance of the Post Correspondence Problem: $A_{1}=100, A_{2}=0, A_{3}=1$ and $B_{1}=1, B_{2}=100, B_{3}=00$. Compute a solution to the above instance and report the sequence of indices or answer No solution possible.(3)

It can be verified that the shortest sequence is $1,3,1,1,3,2,2$
(d) Classify the following languages under recursive/r.e. but not recursive/ not r.e. (3 $\times 2$)
i. $\{<M>\mid M$ takes fewer than 1000 steps for some input $\}$ recursive
ii. $\{<M>\mid M$ takes fewer than 1000 steps for at least 1000 inputs $\}$ recursive
iii. $\{<M>\mid M$ takes fewer than 1000 steps for all inputs $\}$ recursive The answer is NO for any interesting language.

Since the number of steps is bounded, an M_{u} can simulate it for some fixed number of steps and depending on whether it is accepted, it can decide for a given string. Note that no string with length >1000 with satisfy this condition, so it will cycle through a maximum of $|\Sigma|^{1000}$ strings. For any longer string, the answer can be deduced on the basis of the prefix - if the tape head never reaches the 1001-th cell of the input, then the answer is YES, i.e., it is never trying to read the 1001 input position. The above argument generalizes to any k-tape machine.
(e) Every infinite recursively enumerable language has an infinite recursive subset. True (3)

Consider a generator for any infinite r.e. language - we print the next string that is larger than the previous number.
(f) Describe a CFG in Chomsky Normal Form for the set of strings $a^{i} b^{j} i \neq j$. (3)
$S \rightarrow A S_{1}\left|S_{1} B \quad S_{1} \rightarrow X_{a} S_{2}\right| S_{2} \rightarrow S_{1} X_{b}$
$A \rightarrow A X_{a}\left|a B \rightarrow B X_{b}\right| b \quad X_{a} \rightarrow a \quad X_{b} \rightarrow b$
(g) If $L_{1} \leq_{f} L_{2}$ where f uses deterministic logarithmic space then - If L_{2} has a deterministic polynomial time algorithm then L_{1} has a polynomial time algorithm. (2)
(h) If $L \in \operatorname{NSPACE}(f(n))$ then $L \in \operatorname{NTIME}\left(2^{(O(f(n))}\right.$. (2)
(i) Determining if a given graph has a vertex cover of size 25 is NPC. False (2)

This can be checked in $\binom{n}{25}$ steps by verifying all subsets of size 25 .
(j) If the 3 colorability problem has an algorithm taking $2^{\log ^{2} n}$ time then the 3-SAT problem has $O\left(2^{\log ^{2} n}\right)=O\left(n^{O(\log n)}\right.$ time algorithm. (2)
(k) A boolean formula is called a tautology if it evaluates to True for all truth assignments. Then, Tautology belongs to co- $\mathcal{N P}$ (2)
2. Consider the relation $L_{1} \subset L_{2} \subset L_{3}$. Is it possible that L_{1} and L_{3} are non-recursive and L_{2} is recursive ? Justify. Assume that $L_{i} \subset 0^{*}$, i.e., unary alphabet. (10)
Remark: Answer not valid if only one of the relations is satisfied.
Consider any non-recursive r.e. language, say L_{u} (over unary alphabet). Consider $L_{1}=\left\{2 x \mid x \in L_{u}\right\}$. Let $L_{2}=\{2 i \mid i$ is an integer $\}$. Define $L_{u}^{\prime}=\left\{2 x+1 \mid x \in L_{u}\right\}$ and $L_{3}=L_{2} \cup L_{u}^{\prime}$.
Note that L_{1} is non-recursive, as $L_{u} \leq L_{1}$. Similarly L_{3} is also non-recursive as $L_{u} \leq L_{u}^{\prime}$. Indeed if L_{3} is recursive, then $L_{u}^{\prime}=L_{3} \cap L_{o}$ is recursive as $L_{o}=\{2 i+1\}$ is recursive.
3. Let $L \in \mathcal{P}$ (deterministic polynomial time). Which of the following statments are true ? Justify. (3+7)
(i) $\bar{L} \in P$

True
(ii) $L^{*} \in P$.

Say there is a $g(n)$ steps TM that accepts L where g is a polynomial.
(i) Note that $x \notin L$ iff x is not accepted within $g(|x|)$ steps and this can be easily counted.So $\bar{L} \in P$.
(ii) $x \in L^{*}$ iff $x=x_{1} \cdot x_{2} \ldots x_{k}$ where $\left|x_{i}\right| \geq 1, k=|x|$ and $x_{i} \in L$. One can design a dynamic prog based algorithm similar to CYK to do the job in polynomial time.
4. Consider a $S(n)$ space bounded non-deterministic Turing Machine M. Let m denote the maximum number of distinct IDs in any valid sequence of computation.
Consider a deterministic TM M^{\prime} that recognizes the same language by simulating M using its storage tapes. However, it doesn't want to store all the m IDs along any computational trail to save space. To check if the initial ID I_{0} (containing an input w of length n), is accepted, then there is a valid final ID I_{f} such that $I_{0} \rightsquigarrow I_{f}$. The notation \rightsquigarrow denotes that there is a valid sequence of computation. For this, there must be some intermediate ID I_{k} such that $I_{0} \rightsquigarrow I_{k}$ and $I_{k} \rightsquigarrow I_{f}$ (alternately these are consecutive IDs).
Using this idea, design a deterministic TM M^{\prime} that uses at most $O\left(S^{2}(n)\right)$ space for $S(n) \geq \log n$. (15)

This is the statement of Savich's theorem. We know that for any k-tape space bounded TM with tape alphabet size t and q states, the number of distinct IDs is bounded by $n \times t^{S(n) k} \times q \leq 2^{c S(n)}$ for some constant c for $S(n)>\log n$. If any string $w \in L, I_{0} \xrightarrow{2^{c S(n)}} I_{f}$ for some final ID I_{f}. This implies that for some ID I_{k}, we have $I_{0} \xrightarrow{2^{c S(n)-1}} I_{m}$ and $I_{k} \xrightarrow{2^{c S(n)-1}} I_{f}$. Each of these can be solved recursively by cycling through all the $2^{c S(n)}$ options for I_{m}. These can be generated using a counter having $c S(n)$ bits and recursively solved. Note that the first and the second sub-problem can be solved using the same space, i.e., the space can be reused. So the space needed is the space for the counter and the ID for each recursive call that $d S(n)$ bits for some appropriate constant d. The total space required can be written as a recurrence

$$
F(N)=F(N / 2)+e \log N \text { where } N=2^{c S(n)}
$$

This yields solution $F(N)=e \log ^{2} N$. This can be reduced to $S^{2}(n)$ by using space-compression.
5. The set intersection problem is defined as follows: Given finite sets $A_{1}, A_{2} \ldots A_{m}$ and $B_{1}, B_{2}, \ldots B_{n}$, is there a set S such that

$$
\begin{aligned}
& \left|S \cap A_{i}\right| \geq 1 \text { for } i=1,2, \ldots m \text { and } \\
& \left|S \cap B_{j}\right| \leq 1 \text { for } j=1,2, \ldots n .
\end{aligned}
$$

Show that the set intersection problem is NP Complete. (10) The problem is in NP, since one can guess the set S and verify properties (i) and (ii) in polynomial number of steps.
For completeness, we reduce SAT to the the set intersection problem as follows. For each clause i, we define A_{i} to be the set of literals in clause i, i.e., $\left(y_{i, 1} \vee y_{i, 2} \vee y_{i, 3}\right)$. On the other hand, B_{i} consists of elements $\left(x_{i}, \overline{x_{i}}\right)$. A truth assignment is the set S that cannot contain both the literal and its complement and each clause must have at least one true literal. For example, $S=\left\{x_{1}, \bar{x}_{2}, \bar{x}_{3}\right\}$ implies the truth assignment $x_{1}=T, x_{2}=F, x_{3}=F$.
So the reduction function takes as input an instance ϕ of 3 -SAT problem and writes out $A_{i} 1 \leq i \leq m$ from each of the m clauses and B_{i} for $i \leq n$. This is easily done in linear time.
Claim ϕ is satisfiable iff the set-intersection problem has a solution.
(i) Suppose ϕ is satisfiable, then construct S as the set of literals that are set to True. Clearly $\left|S \cap A_{i}\right| \geq 1$ since each clause has at least one literal assigned to True. Moreover $\left|S \cap B_{j}\right| \leq 1$ since a literal and its complement cannot be simulaneously True.
(ii) Conversely suppose S exists - then the satisfiable assignment can be constructed from all literals that are set to True. Because of the restriction on B, the truth assignment is consistent. (If some variable is missing from S, then its truth assignment is not required to make the formula satisfiable.)

