
Assignment 3

COL 352
Introduction to Automata & Theory of Computation

Problem 1

Give context-free grammars generating the following sets

(a) the set of all strings over alphabet {a, b, .,+,∗ , (,), ε, φ} that are well-formed regular expression over
alphabet {a, b}. Note that we must distinguish between ε as the empty string and ε as a symbol in the
regular expression

(b) The set of all strings over alphabet {a, b} not of the form ww for some string w

Solution:

(a) Let Σ = {a, b, .,+,∗ , (,), ε, φ}. Consider the following CFG G -

S → φ | B
B → a | b | ε | B +B | B.B | (B) | B∗

To show that S represents the language L of all the well formed regular expressions over alphabet {a, b}.
I) Claim : L(G) ⊆ L (any string generated by G is a well formed regular expression)

Proof : By induction on the number of production rules through which a string is generated.

Basis : For n = 1, φ can only be generated with one production rule.

Induction Hypothesis: Strings generated with ≤ n production rules are be well formed regular expressions.

Let us assume the Induction Hypothesis is true for k.

Induction Step : For n = k + 1, The last rule applied will be S → B. The second last rule can be:

1. B → B +B: From induction hypothesis (and the fact that the last rule for n = k also is S → B), each
B will lead to a well formed regular expression, say r1 and r2. And, r1 + r2 is a regular expression.
Similarly, other cases.

2. B → B.B

3. B → B∗

4. B → (B)

5. Trivial Cases: B → a | b | ε

II) Claim : L ⊆ L(G) (any well formed regular expression can be generated from the Grammar G)

Proof: By induction on length of regular expression r.

Basis : For n = 0, φ can be generated from G.

Induction Hypothesis: All regular expressions of length less than or equal to n can be generated by G.

Let us assume the induction hypothesis is true for n = k.

Induction Step : For n = k + 1, a regular expression r can be formed via

1

1. r1 + r2: From induction hypothesis, r1 and r2 can be generated by G through a series of steps, say S1

and S2. Then, using the rule S → B and B → B + B followed by S1 and S2, we can generate the
regular expression. Similarly, for other cases.

2. r1.r2

3. (r1)

4. r∗1

From I and II, L(G) = L. Thus, G is the required grammar.

b) Let Σ = {a, b}, consider the following CFG G -

S → AB | BA | A | B
A→ CAC | a
B → CBC | b
C → a | b

To prove that this grammar generates set of all strings not of the form ww

I) Claim : L(G) ⊆ L (any string generated by G is not of the form ww)

Proof : Let the length of the string generated by A and B be 2m+ 1 and 2n+ 1 respectively.

The length of w to form ww would be m + n + 1. The middle a of the string generated from A is at a
distance m+1 and the middle b of the string generated from B is at a distance of 2m+n+2(= 2m+1+b+1)
from the beginning.

This means that the (m+1)th character of the first w, w1, is a and the (m+1)th(= (2m+n+2)−(m+n+1))
character of the second w, w2, is b. Therefore, w1 6=w2.

Hence this grammar generates all strings not of the form ww.

II) Claim : L ⊆ L(G) (all strings not of the form ww can be generated by the grammar)

Proof: Consider a string x not of the form ww

Case 1 - |x| is odd. Proof by induction on the length of x

Basis : x = a or x = b can be derived using the rules S → A→ a and S → B → b

Induction Hypothesis : All odd length strings x, such that |x| ≤ n can be derived from grammar, i.e.,

S → A
∗−→ x or S → B

∗−→ x

Induction Step : Let x′ be the next odd length string such that |x′| = n+ 2. Then,

S → A

S → CAC

S → CxC

or replace A by B. x′ = CxC such that |x′| = |CxC| = n+ 2

Therefore all strings of odd length can be generated from the grammar

Case 2 - |x| is even

Since x is not of type ww, there exists atleast one i such that xi 6= xi+|x|/2.

We can replace xi and xi+|x|/2 by A and B and the others by C. Then x can be viewed as:

(CC...C)i−1A(CC...C)i−1(CC...C)j−1B(CC...C)j−1

such that (i− 1) + (j − 1) + 1 = |x|/2. From induction hypothesis, this string can be generated by our
grammar, and thus all even length strings can be generated.

From I and II, L(G) = L. Thus, G is the required grammar.

2

Problem 2

Show that the language L = {aibjck | i < j < k} is not context free.

Solution : We can prove this via Pumping Lemma. Let the pumping constant be n.

Consider the string S = anbn+1cn+2 ∈ L. Let S = uvwxy where |vx| ≥ 1 and |vwx| ≤ n.

The following cases arise:

1. vwx is in an: For i = 2, S′ = uviwxiy has more(or equal) a’s than b’s =⇒ S′ /∈ L

2. vwx is in bn: For i = 0, S′ = uviwxiy has more(or equal) a’s than b’s =⇒ S′ /∈ L

3. vwx is in cn: For i = 0, S′ = uviwxiy has more(or equal) b’s than c’s =⇒ S′ /∈ L

4. vwx contains both a and b i.e. is across anbn+1: Since x has at least one b, for i = 2, S′ = uviwxiy
has more(or equal) b’s than c’s =⇒ S′ /∈ L.

5. vwx contains both b and c i.e. is across bn+1cn+2: Since v has at least one b, for i = 0, S′ = uviwxiy
has more(or equal) a’s than b’s =⇒ S′ /∈ L.

So, by Pumping Lemma, the given language is not context free.

Problem 3

Show that the language L = {aibj | i 6= j and i 6= 2j} is a CFL.

Solution : Define
L1 = {aibj | i < j}

L2 = {aibj | j < i < 2j}

L3 = {aibj | i > 2j}

Claim : L = L1 ∪ L2 ∪ L3 is a CFL.

Proof : Since union of CFLs is a CFL, the problem reduces to providing a CFG for each of L1, L2 and L3

I) CFG1 for L1

S → AB | B

B → bB | b

A→ aAb | ab

A produces strings with equal number of a’s and b’s. B produces strings containing only b’s. When
concatenated, S produces strings with a’s followed by b’s where number of b’s is greater than a’s.

Alternately, any string in L1 can be split into a string containing equal number of a’s and b’s followed by
only b’s. The first string can be generated by A and the other by B. So, L(CFG1) = L1

II) CFG2 for L2

S → aEb

E → aEb | D

D → aaDb |aab

D generates strings with a’s followed by b’s where number of a’s is double than that of b’s. Say, number
of a’s = 2x and number of b’s = x. (x ≥ 1)

E concatenates a’s in the front and an equal number of b’s in the end. Let, y be number of a’s (and b’s)
added through this production rule where y ≥ 0.

3

S concatenates an a in the front and b at the end. So, the resulting string is a’s followed by b’s where
number of a’s i.a na = 2x + y + 1 and number of b’s i.e. nb = x + y + 1. Clearly, na > nb ∵ x ≥ 1 and
na < 2nb ∵ y ≥ 0. So, L(CFG2) ⊆ L2.

Also, any string in L2 of the form aibj can be split as a2xaybybx where x = i− j and y = 2j − i which are
valid because of the constraints in L2. So, L2 ⊆ L(CFG2).

Hence, L(CFG2) = L2

III) CFG3 for L3

S → AX | A

B → aA | a

X → aaXb | aab

L(CFG3) = L3. (Analysis similar to CFG1.)

From I, II and III, L1, L2 and L3 are CFLs, so L is a CFL

4

