Assignment 3

COL 352
 Introduction to Automata \& Theory of Computation

Problem 1

Give context-free grammars generating the following sets
(a) the set of all strings over alphabet $\left\{a, b, .,+,{ }^{*},(),, \epsilon, \phi\right\}$ that are well-formed regular expression over alphabet $\{a, b\}$. Note that we must distinguish between ε as the empty string and ϵ as a symbol in the regular expression
(b) The set of all strings over alphabet $\{a, b\}$ not of the form $w w$ for some string w

Solution:

(a) Let $\Sigma=\left\{a, b, .,+,{ }^{*},(),, \epsilon, \phi\right\}$. Consider the following CFG G -

$$
\begin{gathered}
S \rightarrow \phi \mid B \\
B \rightarrow a|b| \epsilon|B+B| B \cdot B|(B)| B^{*}
\end{gathered}
$$

To show that S represents the language L of all the well formed regular expressions over alphabet $\{a, b\}$.
I) Claim : $L(G) \subseteq L$ (any string generated by G is a well formed regular expression)

Proof : By induction on the number of production rules through which a string is generated.
Basis : For $n=1, \phi$ can only be generated with one production rule.
Induction Hypothesis: Strings generated with $\leq n$ production rules are be well formed regular expressions.
Let us assume the Induction Hypothesis is true for k .
Induction Step : For $n=k+1$, The last rule applied will be $S \rightarrow B$. The second last rule can be:

1. $B \rightarrow B+B$: From induction hypothesis (and the fact that the last rule for $n=k$ also is $S \rightarrow B$), each B will lead to a well formed regular expression, say r_{1} and r_{2}. And, $r_{1}+r_{2}$ is a regular expression. Similarly, other cases.
2. $B \rightarrow B . B$
3. $B \rightarrow B^{*}$
4. $B \rightarrow(B)$
5. Trivial Cases: $B \rightarrow a|b| \epsilon$
II) Claim : $L \subseteq L(G)$ (any well formed regular expression can be generated from the Grammar G)

Proof: By induction on length of regular expression r.
Basis : For $n=0, \phi$ can be generated from G.
Induction Hypothesis: All regular expressions of length less than or equal to n can be generated by G.
Let us assume the induction hypothesis is true for $n=k$.
Induction Step : For $n=k+1$, a regular expression r can be formed via

1. $r_{1}+r_{2}$: From induction hypothesis, r_{1} and r_{2} can be generated by G through a series of steps, say S_{1} and S_{2}. Then, using the rule $S \rightarrow B$ and $B \rightarrow B+B$ followed by S_{1} and S_{2}, we can generate the regular expression. Similarly, for other cases.
2. $r_{1} \cdot r_{2}$
3. $\left(r_{1}\right)$
4. r_{1}^{*}

From I and II, $L(G)=L$. Thus, G is the required grammar.
b) Let $\Sigma=\{a, b\}$, consider the following CFG G -

$$
\begin{gathered}
S \rightarrow A B|B A| A \mid B \\
A \rightarrow C A C \mid a \\
B \rightarrow C B C \mid b \\
C \rightarrow a \mid b
\end{gathered}
$$

To prove that this grammar generates set of all strings not of the form $w w$
I) Claim : $L(G) \subseteq L$ (any string generated by G is not of the form $w w$)

Proof: Let the length of the string generated by A and B be $2 m+1$ and $2 n+1$ respectively.
The length of w to form $w w$ would be $m+n+1$. The middle a of the string generated from A is at a distance $m+1$ and the middle b of the string generated from B is at a distance of $2 m+n+2(=2 m+1+b+1)$ from the beginning.

This means that the $(m+1)^{t h}$ character of the first w, w_{1}, is a and the $(m+1)^{t h}(=(2 m+n+2)-(m+n+1))$ character of the second w, w_{2}, is b. Therefore, $w_{1} \neq \mathrm{w}_{2}$.

Hence this grammar generates all strings not of the form $w w$.
II) Claim : $L \subseteq L(G)$ (all strings not of the form $w w$ can be generated by the grammar)

Proof: Consider a string x not of the form $w w$
Case 1 - $|x|$ is odd. Proof by induction on the length of x
Basis : $x=a$ or $x=b$ can be derived using the rules $S \rightarrow A \rightarrow a$ and $S \rightarrow B \rightarrow b$
Induction Hypothesis : All odd length strings x, such that $|x| \leq n$ can be derived from grammar, i.e., $S \rightarrow A \xrightarrow{*} x$ or $S \rightarrow B \xrightarrow{*} x$
Induction Step : Let x^{\prime} be the next odd length string such that $\left|x^{\prime}\right|=n+2$. Then,

$$
\begin{gathered}
S \rightarrow A \\
S \rightarrow C A C \\
S \rightarrow C x C
\end{gathered}
$$

or replace A by $B . x^{\prime}=C x C$ such that $\left|x^{\prime}\right|=|C x C|=n+2$
Therefore all strings of odd length can be generated from the grammar
Case 2 - $|x|$ is even
Since x is not of type $w w$, there exists atleast one i such that $x_{i} \neq x_{i+|x| / 2}$.
We can replace x_{i} and $x_{i+|x| / 2}$ by A and B and the others by C. Then x can be viewed as:

$$
(C C \ldots C)_{i-1} A(C C \ldots C)_{i-1}(C C \ldots C)_{j-1} B(C C \ldots C)_{j-1}
$$

such that $(i-1)+(j-1)+1=|x| / 2$. From induction hypothesis, this string can be generated by our grammar, and thus all even length strings can be generated.

From I and II, $L(G)=L$. Thus, G is the required grammar.

Problem 2

Show that the language $L=\left\{a^{i} b^{j} c^{k} \mid i<j<k\right\}$ is not context free.
Solution : We can prove this via Pumping Lemma. Let the pumping constant be n.
Consider the string $S=a^{n} b^{n+1} c^{n+2} \in L$. Let $S=u v w x y$ where $|v x| \geq 1$ and $|v w x| \leq n$.
The following cases arise:

1. $v w x$ is in a^{n} : For $i=2, S^{\prime}=u v^{i} w x^{i} y$ has more(or equal) a's than b's $\Longrightarrow S^{\prime} \notin L$
2. $v w x$ is in b^{n} : For $i=0, S^{\prime}=u v^{i} w x^{i} y$ has more(or equal) a's than b's $\Longrightarrow S^{\prime} \notin L$
3. $v w x$ is in c^{n} : For $i=0, S^{\prime}=u v^{i} w x^{i} y$ has more(or equal) b's than c's $\Longrightarrow S^{\prime} \notin L$
4. $v w x$ contains both a and b i.e. is across $a^{n} b^{n+1}$: Since x has at least one b , for $i=2, S^{\prime}=u v^{i} w x^{i} y$ has more(or equal) b's than c's $\Longrightarrow S^{\prime} \notin L$.
5. $v w x$ contains both b and ci.e. is across $b^{n+1} c^{n+2}$: Since v has at least one b , for $i=0, S^{\prime}=u v^{i} w x^{i} y$ has more(or equal) a's than b's $\Longrightarrow S^{\prime} \notin L$.

So, by Pumping Lemma, the given language is not context free.

Problem 3

Show that the language $L=\left\{a^{i} b^{j} \mid i \neq j\right.$ and $\left.i \neq 2 j\right\}$ is a CFL.
Solution : Define

$$
\begin{gathered}
L_{1}=\left\{a^{i} b^{j} \mid i<j\right\} \\
L_{2}=\left\{a^{i} b^{j} \mid j<i<2 j\right\} \\
L_{3}=\left\{a^{i} b^{j} \mid i>2 j\right\}
\end{gathered}
$$

Claim : $L=L_{1} \cup L_{2} \cup L_{3}$ is a CFL.
Proof : Since union of CFLs is a CFL, the problem reduces to providing a CFG for each of L_{1}, L_{2} and L_{3}
I) $C F G_{1}$ for L_{1}

$$
\begin{gathered}
S \rightarrow A B \mid B \\
B \rightarrow b B \mid b \\
A \rightarrow a A b \mid a b
\end{gathered}
$$

A produces strings with equal number of a's and b's. B produces strings containing only b's. When concatenated, S produces strings with a's followed by b's where number of b's is greater than a's.

Alternately, any string in L_{1} can be split into a string containing equal number of a's and b's followed by only b's. The first string can be generated by A and the other by B. So, $L\left(C F G_{1}\right)=L_{1}$
II) $C F G_{2}$ for L_{2}

$$
\begin{gathered}
S \rightarrow a E b \\
E \rightarrow a E b \mid D \\
D \rightarrow a a D b \mid a a b
\end{gathered}
$$

D generates strings with a's followed by b's where number of a's is double than that of b's. Say, number of a's $=2 x$ and number of b's $=x . \quad(x \geq 1)$
E concatenates a's in the front and an equal number of b's in the end. Let, y be number of a's (and b's) added through this production rule where $y \geq 0$.
S concatenates an a in the front and b at the end. So, the resulting string is a's followed by b's where number of a's i.a $n_{a}=2 x+y+1$ and number of b's i.e. $n_{b}=x+y+1$. Clearly, $n_{a}>n_{b} \because x \geq 1$ and $n_{a}<2 n_{b} \because y \geq 0$. So, $L\left(C F G_{2}\right) \subseteq L_{2}$.

Also, any string in L_{2} of the form $a^{i} b^{j}$ can be split as $a^{2 x} a^{y} b^{y} b^{x}$ where $x=i-j$ and $y=2 j-i$ which are valid because of the constraints in L_{2}. So, $L_{2} \subseteq L\left(C F G_{2}\right)$.

Hence, $L\left(C F G_{2}\right)=L_{2}$
III) $C F G_{3}$ for L_{3}

$$
\begin{gathered}
S \rightarrow A X \mid A \\
B \rightarrow a A \mid a \\
X \rightarrow a a X b \mid a a b
\end{gathered}
$$

$L\left(C F G_{3}\right)=L_{3}$. (Analysis similar to $C F G_{1}$.)
From I, II and III, L_{1}, L_{2} and L_{3} are CFLs, so L is a CFL

