Assignment 3

COL 352 Introduction to Automata & Theory of Computation

Problem 1

Give context-free grammars generating the following sets

- (a) the set of all strings over alphabet $\{a, b, ., +, *, (,), \epsilon, \phi\}$ that are well-formed regular expression over alphabet $\{a, b\}$. Note that we must distinguish between ε as the empty string and ϵ as a symbol in the regular expression
- (b) The set of all strings over alphabet $\{a, b\}$ not of the form ww for some string w

Solution:

(a) Let $\Sigma = \{a, b, .., +, *, (,), \epsilon, \phi\}$. Consider the following CFG G -

$$S \rightarrow \phi \mid B$$
$$B \rightarrow a \mid b \mid \epsilon \mid B + B \mid B.B \mid (B) \mid B^*$$

To show that S represents the language L of all the well formed regular expressions over alphabet $\{a, b\}$.

I) Claim : $L(G) \subseteq L$ (any string generated by G is a well formed regular expression)

Proof : By induction on the number of production rules through which a string is generated.

Basis : For n = 1, ϕ can only be generated with one production rule.

Induction Hypothesis: Strings generated with $\leq n$ production rules are be well formed regular expressions. Let us assume the Induction Hypothesis is true for k.

Induction Step : For n = k + 1, The last rule applied will be $S \to B$. The second last rule can be:

- 1. $B \to B + B$: From induction hypothesis (and the fact that the last rule for n = k also is $S \to B$), each B will lead to a well formed regular expression, say r_1 and r_2 . And, $r_1 + r_2$ is a regular expression. Similarly, other cases.
- 2. $B \rightarrow B.B$
- 3. $B \rightarrow B^*$
- 4. $B \rightarrow (B)$
- 5. Trivial Cases: $B \to a \mid b \mid \epsilon$

II) Claim : $L \subseteq L(G)$ (any well formed regular expression can be generated from the Grammar G)

Proof: By induction on length of regular expression r.

Basis : For n = 0, ϕ can be generated from G.

Induction Hypothesis: All regular expressions of length less than or equal to n can be generated by G.

Let us assume the induction hypothesis is true for n = k.

Induction Step : For n = k + 1, a regular expression r can be formed via

- 1. $r_1 + r_2$: From induction hypothesis, r_1 and r_2 can be generated by G through a series of steps, say S_1 and S_2 . Then, using the rule $S \to B$ and $B \to B + B$ followed by S_1 and S_2 , we can generate the regular expression. Similarly, for other cases.
- 2. $r_1.r_2$
- 3. (r_1)
- 4. r_1^*

From I and II, L(G) = L. Thus, G is the required grammar.

b) Let $\Sigma = \{a, b\}$, consider the following CFG G -

$$S \rightarrow AB \mid BA \mid A \mid B$$
$$A \rightarrow CAC \mid a$$
$$B \rightarrow CBC \mid b$$
$$C \rightarrow a \mid b$$

To prove that this grammar generates set of all strings not of the form ww

I) Claim : $L(G) \subseteq L$ (any string generated by G is not of the form ww)

Proof : Let the length of the string generated by A and B be 2m + 1 and 2n + 1 respectively.

The length of w to form ww would be m + n + 1. The middle a of the string generated from A is at a distance m+1 and the middle b of the string generated from B is at a distance of 2m+n+2(=2m+1+b+1) from the beginning.

This means that the $(m+1)^{th}$ character of the first w, w_1 , is a and the $(m+1)^{th} (= (2m+n+2)-(m+n+1))$ character of the second w, w_2 , is b. Therefore, $w_1 \neq w_2$.

Hence this grammar generates all strings not of the form ww.

II) Claim : $L \subseteq L(G)$ (all strings not of the form ww can be generated by the grammar)

Proof: Consider a string x not of the form ww

Case 1 - |x| is odd. Proof by induction on the length of x

Basis : x = a or x = b can be derived using the rules $S \to A \to a$ and $S \to B \to b$

Induction Hypothesis : All odd length strings x, such that $|x| \leq n$ can be derived from grammar, i.e.,

 $S \to A \xrightarrow{*} x \text{ or } S \to B \xrightarrow{*} x$

Induction Step : Let x' be the next odd length string such that |x'| = n + 2. Then,

$$S \to A$$
$$S \to CAC$$
$$S \to CxC$$

or replace A by B. x' = CxC such that |x'| = |CxC| = n + 2

Therefore all strings of odd length can be generated from the grammar

Case 2 - |x| is even

Since x is not of type ww, there exists at least one i such that $x_i \neq x_{i+|x|/2}$.

We can replace x_i and $x_{i+|x|/2}$ by A and B and the others by C. Then x can be viewed as:

 $(CC...C)_{i-1}A(CC...C)_{i-1}(CC...C)_{j-1}B(CC...C)_{j-1}$

such that (i-1) + (j-1) + 1 = |x|/2. From induction hypothesis, this string can be generated by our grammar, and thus all even length strings can be generated.

From I and II, L(G) = L. Thus, G is the required grammar.

Problem 2

Show that the language $L = \{a^i b^j c^k \mid i < j < k\}$ is not context free.

Solution: We can prove this via Pumping Lemma. Let the pumping constant be n. Consider the string $S = a^n b^{n+1} c^{n+2} \in L$. Let S = uvwxy where $|vx| \ge 1$ and $|vwx| \le n$.

The following cases arise:

1. vwx is in a^n : For $i = 2, S' = uv^i wx^i y$ has more(or equal) a's than b's $\implies S' \notin L$

2. vwx is in b^n : For $i = 0, S' = uv^i wx^i y$ has more (or equal) a's than b's $\implies S' \notin L$

- 3. vwx is in c^n : For $i = 0, S' = uv^i wx^i y$ has more(or equal) b's than c's $\implies S' \notin L$
- 4. vwx contains both a and b i.e. is across $a^n b^{n+1}$: Since x has at least one b, for $i = 2, S' = uv^i wx^i y$ has more(or equal) b's than c's $\implies S' \notin L$.
- 5. vwx contains both b and c i.e. is across $b^{n+1}c^{n+2}$: Since v has at least one b, for $i = 0, S' = uv^i wx^i y$ has more(or equal) a's than b's $\implies S' \notin L$.

So, by Pumping Lemma, the given language is not context free.

Problem 3

Show that the language $L = \{a^i b^j \mid i \neq j \text{ and } i \neq 2j\}$ is a CFL. Solution : Define

$$L_{1} = \{a^{i}b^{j} \mid i < j\}$$
$$L_{2} = \{a^{i}b^{j} \mid j < i < 2j\}$$
$$L_{3} = \{a^{i}b^{j} \mid i > 2j\}$$

Claim : $L = L_1 \cup L_2 \cup L_3$ is a CFL.

Proof : Since union of CFLs is a CFL, the problem reduces to providing a CFG for each of L_1, L_2 and L_3 I) CFG_1 for L_1

$$S \to AB \mid B$$
$$B \to bB \mid b$$
$$A \to aAb \mid ab$$

A produces strings with equal number of a's and b's. B produces strings containing only b's. When concatenated, S produces strings with a's followed by b's where number of b's is greater than a's.

Alternately, any string in L_1 can be split into a string containing equal number of a's and b's followed by only b's. The first string can be generated by A and the other by B. So, $L(CFG_1) = L_1$

II) CFG_2 for L_2

$$\begin{array}{c} S \rightarrow aEb \\ E \rightarrow aEb \mid D \\ D \rightarrow aaDb \mid aab \end{array}$$

D generates strings with a's followed by b's where number of a's is double than that of b's. Say, number of a's = 2x and number of b's = x. $(x \ge 1)$

E concatenates a's in the front and an equal number of b's in the end. Let, y be number of a's (and b's) added through this production rule where $y \ge 0$.

S concatenates an a in the front and b at the end. So, the resulting string is a's followed by b's where number of a's i.a $n_a = 2x + y + 1$ and number of b's i.e. $n_b = x + y + 1$. Clearly, $n_a > n_b \because x \ge 1$ and $n_a < 2n_b \because y \ge 0$. So, $L(CFG_2) \subseteq L_2$.

Also, any string in L_2 of the form $a^i b^j$ can be split as $a^{2x} a^y b^y b^x$ where x = i - j and y = 2j - i which are valid because of the constraints in L_2 . So, $L_2 \subseteq L(CFG_2)$.

Hence, $L(CFG_2) = L_2$

III) CFG_3 for L_3

$$S \to AX \mid A$$
$$B \to aA \mid a$$
$$X \to aaXb \mid aab$$

 $L(CFG_3) = L_3$. (Analysis similar to CFG_1 .)

From I, II and III, L_1, L_2 and L_3 are CFLs, so L is a CFL